60 research outputs found

    Improved Protective Efficacy of a Species-Specific DNA Vaccine Encoding Mycolyl-Transferase Ag85A from Mycobacterium ulcerans by Homologous Protein Boosting

    Get PDF
    Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher—albeit not sustained—protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol

    An Outbreak of Serotype 1 Streptococcus pneumoniae Meningitis in Northern Ghana with Features That Are Characteristic of Neisseria meningitidis Meningitis Epidemics

    Get PDF
    BackgroundThe Kassena-Nankana District (KND) of northern Ghana lies in the African meningitis belt, where epidemics of bacterial meningitis have been reoccurring every 8-12 years. These epidemics are generally caused by Neisseria meningitidis an organism that is considered to be uniquely capable of causing meningitis epidemics MethodsWe recruited all patients with suspected meningitis in the KND between 1998 and 2003. Cerebrospinal fluid samples were collected and analyzed by standard microbiological techniques. Bacterial isolates were subjected to serotyping, multilocus sequence typing (MLST), and antibiotic-resistance testing ResultsA continual increase in the incidence of pneumococcal meningitis was observed from 2000 to 2003. This outbreak exhibited strong seasonality, a broad host age range, and clonal dominance, all of which are characteristic of meningococcal meningitis epidemics in the African meningitis belt. The case-fatality rate for pneumococcal meningitis was 44.4%; the majority of pneumococcal isolates were antibiotic sensitive and expressed the serotype 1 capsule. MLST revealed that these isolates belonged to a clonal complex dominated by sequence type (ST) 217 and its 2 single-locus variants, ST303 and ST612 ConclusionsThe S. pneumoniae ST217 clonal complex represents a hypervirulent lineage with a high propensity to cause meningitis, and our results suggest that this lineage might have the potential to cause an epidemic. Serotype 1 is not included in the currently licensed pediatric heptavalent pneumococcal vaccine. Mass vaccination with a less complex conjugate vaccine that targets hypervirulent serotypes should, therefore, be considere

    Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans

    Get PDF
    Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone.; Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone.; The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target

    Performance of a real-time PCR approach for diagnosing Schistosoma haematobium infections of different intensity in urine samples from Zanzibar

    Get PDF
    Efforts to control and eliminate schistosomiasis have accelerated over the past decade. As parasite burden, associated morbidity and egg excretion decrease, diagnosis with standard parasitological methods becomes harder. We assessed the robustness and performance of a real-time PCR (qPCR) approach in comparison with urine filtration microscopy and reagent strip testing for the diagnosis of Schistosoma haematobium infections of different intensities.; The robustness of DNA isolation and qPCR was validated in eight laboratories from Europe and Africa. Subsequently, 792 urine samples collected during cross-sectional surveys of the Zanzibar Elimination of Schistosomiasis Transmission (ZEST) project in 2012-2017 were examined with qPCR in 2018. Diagnostic sensitivity of the qPCR was calculated at different infection intensity categories, using urine filtration microscopy as reference test. Spearman's rank correlation between Ct-values and S. haematobium egg counts was assessed and Ct-value percentiles for infection intensity categories determined.; S. haematobium Dra1 DNA-positive samples were identified correctly in all eight laboratories. Examination of urine samples from Zanzibar revealed Dra1 DNA in 26.8% (212/792) by qPCR, S. haematobium eggs in 13.3% (105/792) by urine filtration, and microhaematuria in 13.8% (109/792) by reagent strips. Sensitivity of the qPCR increased with augmenting egg counts: 80.6% (29/36) for counts between 1 and 4 eggs, 83.3% (15/18) for counts between 5 and 9 eggs, 100% (23/23) for counts between 10 and 49 eggs, and 96.4% (27/28) for counts of 50+ eggs. There was a significant negative correlation between Ct-values and egg counts (Spearman's rho = - 0.49, P < 0.001). Seventy-five percent of the Ct-values were ≥ 33 in the egg-negative category, < 31 in the light intensity category, and < 24 in the heavy intensity category.; While the sensitivity of the qPCR was ~ 80% for very light intensity infections (egg counts < 10), in general, the Dra1 based qPCR assay detected twice as many S. haematobium infections compared with classical parasitological tests. The qPCR is hence a sensitive, urine-based approach for S. haematobium diagnosis that can be used for impact assessment of schistosomiasis elimination programmes, individual diagnosis, and in improved format also for verification and certification of elimination.; ISRCTN, ISRCTN48837681 . Registered 05 September 2012 - Retrospectively registered

    Loss of Genomic Diversity in a Neisseria meningitidis Clone Through a Colonization Bottleneck.

    Get PDF
    Neisseria meningitidis is the leading cause of epidemic meningitis in the "meningitis belt" of Africa, where clonal waves of colonization and disease are observed. Point mutations and horizontal gene exchange lead to constant diversification of meningococcal populations during clonal spread. Maintaining a high genomic diversity may be an evolutionary strategy of meningococci that increases chances of fixing occasionally new highly successful "fit genotypes". We have performed a longitudinal study of meningococcal carriage and disease in northern Ghana by analyzing cerebrospinal fluid samples from all suspected meningitis cases and monitoring carriage of meningococci by twice yearly colonization surveys. In the framework of this study, we observed complete replacement of an A: sequence types (ST)-2859 clone by a W: ST-2881 clone. However, after a gap of 1 year, A: ST-2859 meningococci re-emerged both as colonizer and meningitis causing agent. Our whole genome sequencing analyses compared the A population isolated prior to the W colonization and disease wave with the re-emerging A meningococci. This analysis revealed expansion of one clone differing in only one nonsynonymous SNP from several isolates already present in the original A: ST-2859 population. The colonization bottleneck caused by the competing W meningococci thus resulted in a profound reduction in genomic diversity of the A meningococcal population

    Emergence and genomic diversification of a virulent serogroup W:ST-2881(CC175) Neisseria meningitidis clone in the African meningitis belt.

    Get PDF
    Countries of the African 'meningitis belt' are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the 'cell envelope' and the 'transport/binding protein' categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion

    Clonal Waves of Neisseria Colonisation and Disease in the African Meningitis Belt: Eight- Year Longitudinal Study in Northern Ghana

    Get PDF
    BACKGROUND: The Kassena-Nankana District of northern Ghana lies in the African “meningitis belt” where epidemics of meningococcal meningitis have been reoccurring every eight to 12 years for the last 100 years. The dynamics of meningococcal colonisation and disease are incompletely understood, and hence we embarked on a long-term study to determine how levels of colonisation with different bacterial serogroups change over time, and how the patterns of disease relate to such changes. METHODS AND FINDINGS: Between February 1998 and November 2005, pharyngeal carriage of Neisseria meningitidis in the Kassena-Nankana District was studied by twice-yearly colonisation surveys. Meningococcal disease was monitored throughout the eight-year study period, and patient isolates were compared to the colonisation isolates. The overall meningococcal colonisation rate of the study population was 6.0%. All culture-confirmed patient isolates and the majority of carriage isolates were associated with three sequential waves of colonisation with encapsulated (A ST5, X ST751, and A ST7) meningococci. Compared to industrialised countries, the colonising meningococcal population was less constant in genotype composition over time and was genetically less diverse during the peaks of the colonisation waves, and a smaller proportion of the isolates was nonserogroupable. We observed a broad age range in the healthy carriers, resembling that of meningitis patients during large disease epidemics. CONCLUSIONS: The observed lack of a temporally stable and genetically diverse resident pharyngeal flora of meningococci might contribute to the susceptibility to meningococcal disease epidemics of residents in the African meningitis belt. Because capsular conjugate vaccines are known to impact meningococcal carriage, effects on herd immunity and potential serogroup replacement should be monitored following the introduction of such vaccines

    Improved Protective Efficacy of a Species-Specific DNA Vaccine Encoding Mycolyl-Transferase Ag85A from Mycobacterium ulcerans by Homologous Protein Boosting

    Get PDF
    Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher—albeit not sustained—protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol

    Evidence for a Stepwise Evolution of the CD3 Family

    No full text
    corecore